THE PORT DISTRICT OF SOUTH WHIDBEY ISLAND SPECIAL MEETING

Held at China City Conference Room, 1804 Scott Rd, Freeland, WA
With virtual access via Zoom meeting service
Tuesday, July 2, 2024 at 2:00 p.m.

AGENDA

```
Join Zoom Meeting
https://us02web.zoom.us/j/84636691967
Meeting ID: 84636691967
One tap mobile
+12532158782,,84636691967\# US (Tacoma)
+12532050468,,84636691967\# US
```

Dial by your location
+1 2532050468 US
+1 2532158782 US (Tacoma)
Meeting ID: 84636691967
Find your local number: https://us02web.zoom.us/u/klVSqFtKp
SPECIAL MEETING CALL TO ORDER and PLEDGE OF ALLEGIANCE (2:00 p.m.)

Fairgrounds

Food Booths/Concession Stands Foundation Work
Workforce Housing Feasibility Study
Future Presentation to the City of Langley
ADJOURNMENT (Approximately 3:00 p.m.)

D|C|G WATERSHED

MEMORANDUM

TO: Curt Gordan, POSW Commissioner Angi Mozer, POSW Executive Direction

FROM: Raymond L Tennal Jr, EIT
Jordan M. Janicki, PE, SE
DATE: January 18, 2024
RE: POSW Fairgrounds Food Pavilion
Structural Repairs Work Description

Whidbey Island Fairgrounds Food Pavilion needs structural repairs. Soil erosion on the structure's north side has left the exterior bearing walls unsupported, leading to a sagging roof, walls out of plumb, and cracked foundations.

Provide temporary shoring consisting of new posts and beams will be installed within 2 ft along the structure's north side to support the roof and to bear while the structural repair is made. The existing north wall footing and stem wall are to be removed where they have broken, rotated to the north, and settled. A New Controlled Density Fill (CDF) will be placed under the existing slab. A new footing is to be placed, located $18^{\prime \prime}$ below the finished grade, and a new $6^{\prime \prime}$ concrete stem wall is to be added to the underside of the existing exterior wall. Tie the new stem wall into the existing slab.

Reinforce existing rafters with signs of failures and/or excessive deflections. Some existing rafters have sizable knots along the bottom edge of the rafters and are structurally compromised. Others have developed cracks along the grains and are structurally compromised. These rafters will need a second $2 x$ rafter installed tight to the existing.

MEMORANDUM

TO: Curt Gordan, POSW District 3 Commissioner
Angi Mozer, POSW Executive Director
FROM: Raymond L. Tennal Jr., EIT Jordan M. Janicki, PE, SE

DATE: May 31, 2024

RE: POSW Fairgrounds Food Pavilion Structural Repair Work Description Addendum

During the meeting on May 30, 2024, a proposed repair option for the foundation on the north side of the building was reviewed. This option, as stated in a DCG/Watershed memo dated December 12, 2023, suggests that the stem wall and footing should be replaced. Alternatively, the stem wall can remain in place, provided a new bearing wall is supported on the existing slab once control density fill (CDF) is placed to fill the voids under the slab and existing footing. Please refer to the SSK attached for more details.

If there are any questions or comments, please contact Facet.

Date	Invoice \#
$6 / 19 / 2024$	2814

Bill To:

Port of South Whidbey Island
PO Box 872
Freeland WA 98249

CHANGE ORDER

Eagle Building Company
11248 SR 525
Clinton, WA 98236
Phone: (360) 331-7813
Fax: (360) 331-7812

CHANGE ORDER NUMI

CUSTOMER: Port of South Whidbey

PROJECT: Food Booth Foundation Repair 2024-02

The Contract between Eagle Building Company and Port of South Whidbey ("Customer"), dated $05 / 28 / 2024$, is changed as follows:

Add for additional excavation and CDF placement beyond original RFP scope.

$\$ 8,685.00$
Add for epoxy connections required by engineer
\$2,685.00
Subtotal
\$11,370.00
Sales Tax
\$1,000.56
Total
\$12,370.56

- The original Contract Price was... \$38,998.40
- Net change by previously authorized Change Orders.
\$0.00
- The Contract Price prior to this Change Order was.
$\$ 38,998.40$
- This Change Order will | X increase |
| :--- |
| \square |
| \square decrease | the Contract Price by \$12,370.56
- The new Contract Price* including this Change Order will be \qquad \$51,368.96

Eagle Development Group, LLC d/b/a
Customer
Eagle Building Company

Date:

Date: \qquad

[^0]| Date | Invoice \# |
| :---: | :---: |
| $6 / 19 / 2024$ | 2813 |

Bill To:

Port of South Whidbey Island
PO Box 872
Freeland WA 98249

	Pescription	P.O. No.	Terms
	Project		
Food Booth Foundation Repair RFP 2024-02 - Complete as oof 6/24/24	Foceipt	Food Booth Foundati...	

MEMORANDUM

TO:

Curt Gordan, POSW District 3 Commissioner Angi Mozer, POSW Executive Director

FROM: Raymond L. Tennal Jr., EIT Jordan M. Janicki, PE, SE

DATE: June 25,2024
RE: POSW Fairgrounds Food Pavilion
Special Inspection \& New Bearing and Shear Walls

On June 24, 2024 at 1:00 pm, a site visit was made to Whidbey Island Fair Grounds to inspect the installation of drill and epoxy-embedded anchors tying the existing stem wall to the existing slab. At the time of the inspection, the Controlled Density Fill (CDF) had been placed per Facet's memo dated May 31, 2024. Anchor locations have been drilled to the depth of $12^{\prime \prime}$, penetrating the slab approximately $6^{\prime \prime}$. The hole was prepared per the instructions provided on the epoxy cartage, followed by placing the Simpson Set-3G with the expiration date of 03/06/26, filling the hole, and placing the $1 / 2^{\prime \prime} \emptyset$ all threaded into the hole. Based on the observations, the anchor is installed per the manufacturer's specifications.

Additionally, the owner and contractor inquired about details for installing the new bearing and shear wall, which were to be installed per the $1 /$ SSK attached to the previous mention memo. Bearing studs should be provided under each rafter or at $16^{\prime \prime}$ o.c.

Shear walls require a minimum of 10 shear panels that are $32^{\prime \prime}$ long or 7 shear panels that are $48^{\prime \prime}$ long and are full wall height with 2×4 studs at $16^{\prime \prime}$ o.c. Provide at least one panel in each booth. Base and top plate connections shall be as specified in the $1 /$ SSK provided in the May 31,2024 memo. These piers can be located at the owner/contractor's discretion, such that they can avoid the location of existing openings, electrical outlets, and plumbing equipment. These piers should generally be provided at $16^{\prime}-0^{\prime \prime}$ on center max. Holdowns are not required. Refer to Figure 2 for additional requirements for shear wall construction. Calculations are attached.

If there are any questions or comments, please contact Facet.

Figure 1 - Simpson Set-3G Epoxy

Figure 2 - Shearwall Framing Detail

Structural Calculations

FOR

POSW FAIRGROUNDS
Food Pavilion
Langley, WA.

June 28, 2024

ITEM PAGE

Design Criteria...DC-1 to DC-4
Calculations
C-1 to C-12

4
 FACET

Structural Calculations
Design Criteria
Port of South Whidbey Fairgrounds Food Pavilion

Langley, WA.

	Date:	Made By:
Project:	POSW East Food Pavilion	
Description:	Design Criteria	

Design Criteria
Code: 2021 International Building Code
Seismic:
Latitude $=48.0318$ North
Longitude $=122.4029$ West
Spectral Response Acceleration, Ss \& S1 = $1.400 \& 0.501$
Spectral Response Acceleration, Sds \& Sd1 $=1.120$ \& 0.601
Soil Site Class, Fa \& Fv =
$1.200 \& 1.799$
Response Modification Factor, $R=6.5$

Wind:

$$
\begin{aligned}
& \text { Exposure }=C \\
& \text { Basic Wind Speed }=110 \mathrm{mph} \\
& \text { Topographical Terrain : Flat } \\
& \qquad \text { Kzt }=1.00
\end{aligned}
$$

Live Loads:

$$
\text { Roof }=25 \mathrm{psf}
$$

Floor $=40$ psf

Soils:
Assumed By Owner
Soil Bearing $=1,500$ psf
Active Soil Pressure $=35$ pcf
Passive Soil Pressure $=250$ pcf
IBC Soil Site Classification $=D$
Frost Depth = 12 inches

Address:

No Address at This Location

ASCE Hazards Report

Standard: ASCE/SEI 7-16 Latitude: 48.031812
Risk Category: II
Soil Class: D - Default (see Section 11.4.3)

Longitude: -122.402914
Elevation: 162.8163532481809 ft

Wind

Results:

Wind Speed	98 Vmph
10 -year MRI	67 Vmph
25 -year MRI	74 Vmph
50 -year MRI	78 Vmph
100 -year MRI	83 Vmph

Data Source:
Date Accessed:

ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, and Section 26.5.2
Mon Jun 242024

Value provided is 3 -second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability $=$ $0.00143, \mathrm{MRI}=700$ years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Seismic

Site Soil Class:
Results:

$\mathrm{S}_{\mathrm{S}}:$	1.4	$\mathrm{~S}_{\mathrm{D} 1}:$	N / A
$\mathrm{S}_{1}:$	0.501	$\mathrm{~T}_{\mathrm{L}}:$	6
$\mathrm{~F}_{\mathrm{a}}:$	1.2	$\mathrm{PGA}:$	0.605
$\mathrm{~F}_{\mathrm{V}}:$	N / A	$\mathrm{PGA}_{\mathrm{M}}:$	0.725
$\mathrm{~S}_{\mathrm{MS}}:$	1.681	$\mathrm{~F}_{\mathrm{PGA}}:$	1.2
$\mathrm{~S}_{\mathrm{M} 1}:$	N / A	$\mathrm{I}_{\mathrm{e}}:$	1
$\mathrm{~S}_{\mathrm{DS}}:$	1.12	$\mathrm{C}_{\mathrm{V}}:$	1.38

Ground motion hazard analysis may be required. See ASCE/SEI 7-16 Section 11.4.8.

Data Accessed:
Date Source:

Mon Jun 242024
USGS Seismic Design Maps

Structural Calculations

Calculations

Port of South Whidbey Fairgrounds Food Pavilion

Langley, WA.

C-FACET	Date: Made By:	6/25/2024 RLT
Project:	POSW Food Pavilion	
Description:	Wind Base Shear	

Assmptions:

Enclosed structure with simple diaphragm low-rised with flat, gable or hip roofs. Reference from ASCE 7-16

Design wind pressure are determine from the following equation and Fiqure 28.5-1

ASCE 7-16 F28.5-1 for $\mathrm{V}=\quad 100 \mathrm{mph}$

Roof Angle	Load Case	A	B	C	D
	1	15.9	-8.2	10.5	-4.9
10	1	17.9	-7.4	11.9	-4.3
15	1	19.9	-6.6	13.3	-3.8
20	1	22.0	-5.8	14.6	-3.2
25	1	19.9	3.2	14.4	3.3
30	1	17.8	12.2	14.2	9.8
45	1	17.8	12.2	14.2	9.8
25	2	--	--	--	--
30	2	17.8	12.2	14.2	9.8
45	2	17.8	12.2	14.2	9.8

Design Wind Presures, $\mathbf{p}_{\mathbf{s}}$

$p_{s}=\lambda K_{z t} p_{s 30}$		HORIZONTAL LOAD (LRFD, psf			
Direction	Roof Angle	End zone		Interior zone	
		Wall A	Roof B	Wall C	Roof D
F/B	0.00	19.24	0.00	12.71	0.00
S/S	7.13	21.66	0.00	14.40	0.00

Project:
POSW Food Pavilion
HORIZONTAL WIND FORCES:
Front/Back Direction:

	Location	Width	Height	Plane	End	End	Zone	Int	Int		Calc'd	Calc'd	MIN	Force
					Zone	A	B	Zone	C	D	LRFD	ASD	Force	Used
		feet	feet		length	pressu	(psf)	length	pressu	(psf)	kips	kips	kips	kips
ROOF	Top Roof to Eave	150.0	2.50	roof	3.00	19.24	0.00	147.0	12.71	0.00	4.74	2.84	1.80	
	Eave to Midwall	150.0	3.88	wall	3.00	19.24	0.00	147.0	12.71	0.00	7.46	4.48	5.58	
										$\Sigma=$	12.20	7.32	7.38	7.38

Total Wind Base Shear (ASD, kips), $\mathbf{V}_{\text {Side }}=7.38$
Side/Side Direction:

Location		Width	Height	Plane	End	End Zone		$\begin{array}{\|c\|} \hline \text { Int } \\ \text { Zone } \end{array}$	Int Zone		$\begin{aligned} & \text { Calc'd } \\ & \text { LRFD } \end{aligned}$	$\begin{gathered} \hline \text { Calc'd } \\ \text { ASD } \end{gathered}$	MIN Force	Force Used
					Zone	A	B		C	D				
		feet	feet		length	pressure		length	pressure		kips	kips	kips	kips
ROOF	Top Roof to Eave	20.0	1.50	roof	6.0	21.66	0.00	14.0	14.40	0.00	0.00	0.00	0.15	\bigcirc
	Eave to Midwall	20.0	3.88	wall	6.0	21.66	0.00	14.0	14.40	0.00	1.28	0.77	0.775	
										$\Sigma=$	1.28	0.77	0.93	0.93

\(\left.\begin{array}{|ccc|}\hline FACET \& \& Date:

Made By: \& 6/25/2024

RLT\end{array}\right]\)| | |
| :---: | :---: |
| Project: | POSW Food Pavilion |
| Description: | Seismic Weights |

DEAD LOAD WEIGHTS FOR SEISMIC CALCULATIONS:

Date:	$6 / 25 / 2024$
Made By:	RLT

Project: POSW Food Pavilion
Description:
Seismic Story Shear
ASCE 7-16
Seismic Use Group = II From Table 1.5-1
Site Classification = D
Geotech Report Provided = No
Refer to attached sheet for Map specified variables

$\mathrm{S}_{\mathrm{S}}=$	1.400	$\mathrm{F}_{\mathrm{a}}=1.200$	Table 11.4-1)
$\mathrm{S}_{1}=$	0.501	$\mathrm{F}_{\mathrm{v}}=1.799$	(Table 11.4-1)
$\mathrm{S}_{\mathrm{DS}}=$	1.120	$=0.67{ }^{*} F_{a}{ }^{*} S_{s}$	(11.4-1\&11.4-3)
$\mathrm{S}_{\mathrm{D} 1}=$	0.601	$=0.67{ }^{*} F_{v}{ }^{*} S_{1}$	(11.4-2\&11.4-4)
ht, $h_{n}=$	15.0		
s, $\mathrm{C}_{\mathrm{T}}=$	0.020	$\mathrm{x}=0.750$	per Table 12.8-2
d, $\mathrm{T}=$	0.152	$=C_{T^{*}}\left(h_{n}\right)^{0.75}$	(12.8-7)
$\mathrm{m}, \mathrm{S}_{\mathrm{a}}=$	1.1200		(11.4-5 \& 11.4-6)
or, $\mathrm{R}=$	6.5		
tor, $\mathrm{l}=$	1.0		per Table 1.5-2
gory =	D		-11.6
tor, $r=$ Calculation Required tor, $r=1.0$			

Seismic Response Coefficient

$$
\begin{align*}
\mathrm{C}_{\mathrm{s}}=\mathrm{S}_{\mathrm{D} /} / \mathrm{R} / \mathrm{I} & =0.172 \tag{12.8-2}\\
\mathrm{C}_{\mathrm{s}, \mathrm{MAX}}=\mathrm{S}_{\mathrm{D} 1} / \mathrm{T}(\mathrm{R} / \mathrm{I}) & =0.606 \tag{12.8-3}\\
\mathrm{C}_{\mathrm{s}, \mathrm{MIN}}=0.044 \mathrm{~S}_{\mathrm{DS}{ }^{*}}= & 0.049 \tag{12.8-5}\\
\mathbf{C}_{\mathrm{s}} & =\mathbf{0 . 1 7 2}
\end{align*}
$$

Seismic Base Shear

$$
\text { Sum }=274.5
$$

FACET	Date:	Made By:

Level	Wind Front/Back (kips)	Wind Side (kips)	Seismic (kips)
Roof	7.38	0.93	4.27
Total	7.38	0.93	4.27

Controlling:

Front/Back - Wind
Side - Seismic

Front/Back Direction

Side/Side Direction

The following design review the shear wall requirements for shoring wall to be installed at the back wall (north side) of the east food pavilion building. This analysis studies the side/side direction and provided resistance for 50% of the 4.27 kips . The remainder of the lateral system is resisted by existing conditions.

FACET		Date:
Project:	Made By:	R/25/2024
Description:	POSW Food Pavilion	

AWC SDPWS 2015 Table 4.3A (Seismic)

Panel Grade	Nominal Thickness	Minimum Penetration	Common or Galv. Box Nail Size	Nail Spacing at Panel Edges			
				6" o.c.	4" o.c.	3" o.c.	2" o.c.
Wood Structural Panels - Sheathing	5/16	1 1/4	6d	360	540	700	900
	3/8			440	640	820	1060
	7/16	$13 / 8$	8d	480	700	900	1170
	15/32			520	760	980	1280
	15/32	1 1/2	10d	620	920	1200	1540
	19/32			680	1020	1330	1740
Stud Species:		HF	Sheathing Thickness:	7/16			
Specific Gravity:		0.43	Shear Wall Nailing:	8d			
Design Method		ASD, Ω	1-(0.5-SG)/ $\Omega=$	0.47			
Factor:		2.00					

AWC SDPWS 2015 Table 4.3A (Seismic) Adjusted for Grade and Design Method

Panel Grade	Nominal Thickness	Minimum Penetration	Common or Galv. Box Nail Size	Nail Spacing at Panel Edges			
				6" o.c.	4" o.c.	3" o.c.	2" o.c.
Wood	5/16	1 1/4	6d	167	251	326	419
	3/8			205	298	381	493
Structural Panels - Sheathing	7/16	$13 / 8$	8d	223	326	419	544
	15/32			242	353	456	595
	15/32	1 1/2	10d	288	428	558	716
	19/32			316	474	618	809

Notes:

1) Unit shear capacity from SDPWS 2015 Table 4.3A are adjusted for design method.
2) Allowable shear values in framing members other than Douglas fir-larch shall be calculated by multiplying the shear capacities for nails in DF by 1-(0.5-SG).
3) Values for $3 / 8$ and $7 / 16$ ply may be increased to the values allowed for $15 / 32$, if framing is spaced maximum of $16^{\prime \prime}$ o.c. or panels are applied long way across the studs.
4) Shaded values require $3 x$ framing or $\mathrm{Dbl} 2 x$ at all abutting panel edges.

			Shear Wall Sheathing	ed in Design			
Panel Grade	Nominal Thickness	Minimum Penetration	Common or Galv. Box Nail Size	8d at 6" o.c.	Nail Spacing 8d at 4" o.c.	Panel Edges 8d at 3" o.c.	8d at 2" o.c.
Panel Sheathing	7/16	$13 / 8$	8d	242	353	456	595

Species $=\mathbf{H F}$
Base Plate $=2 x$ Plate
Base Plate Thickness =
$11 / 2$ in Floor/Roof Sheathing Thickness = $3 / 4$ in

Base plate nailing

$Z^{\prime}=Z C_{D} C_{M} C_{t}$	Applicability of Adjustment Fa	
Duration Factor, $\mathrm{C}_{\mathrm{D}}=$	1.60	Wind or Seismic
Wet Service Factor, $\mathrm{C}_{\mathrm{M}}=$	1.00	Moisture content $<19 \%$
Temperature Factor, $\mathrm{C}_{\mathrm{t}}=$	1.00	Temperatures $<150^{\circ} \mathrm{F}$
Total Adjustment Factor, $\mathrm{Z}^{\prime}=$	1.60	

Top plate/Rim connection

Hardware	Fasteners	Allowable Loads (lbs)						
		Each	24" o.c.	16" o.c.	12" o.c.	8" о.с.	$\begin{gathered} \text { 12" o.c. ea. } \\ \text { face } \end{gathered}$	$\begin{gathered} 8 " \text { o.c. ea. } \\ \text { Face } \end{gathered}$
Simpson A35	(12) 8dx 1-1/2"	560	280	420	560	840	1120	1680
Simpson LTP4	(12) 8dx 1-1/2"	540	270	405	540	810	1080	1620

1) Values are based on Simpson C-C-2019 Catalog.
2) All capacities include adjustment for wind and seismic forces.

Base plate/Rim nailing - Single Shear Connection

Fasteners	Diameter	Length (in)	Embed (in)	Adjustme nt Factor	Table Values	$11 / 2$-in plate and 3/4-in Flr Sheathing (lbs)				
	(in)					Per Nail	6" o.c.	4" o.c.	3" o.c.	2" o.c.
16d Box Nails	0.135	3.5	1.25	1.48	89	132	264	396	527	791
16d Sinker	0.148	3.25	1.00	1.08	102	110	221	331	441	662
16d Commons	0.162	3.5	1.25	1.23	122	151	301	452	602	904

Fasteners	Diameter (in)	Length (in)	Embed (in)	Adjustme nt Factor	Table Values	$11 / 2$-in plate and 3/4-in Flr Sheathing (lbs)				
						Per Nail	16" o.c.	8" o.c.	6" o.c.	4" o.c.
1/4"Øx4-1/2" SDS	0.25	4.5	2.25	1.44	190	274	205	410	547	821
1/4"Øx5" SDS	0.25	5	2.75	1.60	190	304	228	456	608	912
1/4"Øx6" SDS	0.25	6	3.75	1.60	190	304	228	456	608	912

1) Single shear values for 16d are based on NDS-2018 Table 12N.
2) Values have been reduced for penetration reduction per Table 12 N footnote 3.
3) SDS values are based on values in Simpson C-F-2019TECHSUP catalog, page 79.
4) All values have been multiplied by adjustment factor indicated above.

Anchor Bolts - Single Shear Connection

Fasteners	Diameter (in)	Adjustmen t Factor	$\begin{gathered} \hline \text { Table Values } \\ \text { (lbs) } \\ \hline \hline \end{gathered}$	$11 / 2$-in plate and 3/4-in Flr Sheathing (lbs)					
				Per Bolt	48" o.c.	32" o.c.	24" o.c.	16" o.c.	8" o.c.
1/2"Ø Anchor Bolts	0.5	1.60	590	944	236	354	472	708	1416
5/8"Ф Anchor Bolts	0.625	1.60	860	1376	344	516	688	1032	2064
3/4"Ф Anchor Bolts	0.75	1.60	1200	1920	480	720	960	1440	2880
Simpson MASAP	---	---	1060	1060	265	398	530	795	1590

1) Single shear values for anchor bolts are based on NDS-2018 Table 12E.
2) Bolt bending yield strength, $F_{y b}=45,000 \mathrm{psi}$.
3) Dowel bearing strength, $\mathrm{Fc}=7,500 \mathrm{psi}$.
4) Concrete compressive strength, $\mathrm{f}_{\mathrm{c}}=2,500 \mathrm{psi}$.
5) All values have been multiplied by adjustment factor indicated above.
6) Standard installing for MASAP is assumed. Refer to Simpson catalog C-C-2019, page 29 for additional information.

		Date:
Project:	Made By:	RLT
Pescription:	Holdown and Straps	

Floor to Floor Holdowns

Model	Post			Anchor		
	Min. Dim (IN)	Fasteners	Diameter	Centerline	Embedment	Load
MST37	3.00	$(6) 1 / 4 " \emptyset \times 21 / 2$ SDS	0.625	1.313	8	2,355
MST48	3.00	$(10) 1 / 4^{\prime \prime} \varnothing \times 21 / 2$ SDS	0.625	1.313	8	3,640
MST60	3.00	$(14) 1 / 4 " \varnothing \times 21 / 2$ SDS	0.625	1.313	9	5,405
HDU11	5.50	$(30) 1 / 4 " \varnothing \times 21 / 2$ SDS	1.000	1.375	12	8,030

1) Refer to Simpson catalog C-C-2019, page 264 for additional information.
2) All loads have been adjusted for wind and seismic load duration ($C_{D}=1.6$).
3) Holdowns straps to clear span floor diaphragm (16" max).

Shear Wall to Foundation Holdowns

Model	Post			Anchor		
	Min. Dim	Fasteners	Diameter	Centerline	Embedment	Load Load
HDU2	3.00	$(6) 1 / 4^{\prime \prime} \varnothing \times 21 / 2$ SDS	0.625	1.313	8	2,215
HDU4	3.00	$(10) 1 / 4^{\prime \prime} \varnothing \times 21 / 2$ SDS	0.625	1.313	8	3,285
HDU5	3.00	$(14) 1 / 4^{\prime \prime} \varnothing \times 21 / 2$ SDS	0.625	1.313	9	4,340
HDU8	3.00	$(20) 1 / 4^{\prime \prime} \varnothing \times 21 / 2$ SDS	0.875	1.375	10	5,820
HDU11	5.50	$(30) 1 / 4^{\prime \prime} \varnothing \times 21 / 2$ SDS	1.000	1.375	12	8,030

1) Refer to Simpson catalog C-C-2019, page 53 for additional information.
2) All loads have been adjusted for wind and seismic load duration ($C_{D}=1.6$).
3) See attached calculations for anchor bolt embedment length.
4) Holdowns may be installed with up to 18 " above the top of concrete with no load reduction.

Strap Around Openings

Model	Required Fasteners ea. side of opening	Minimum Length (in)	Allowable Load
CS16	(22) 10d	16	1,705
CMSTC16	(58) 16d	27	4,690
CMST14	(66) 16d	36	6,475

1) Refer to Simpson catalog C-C-2019, page 267 for additional information.
2) All loads have been adjusted for wind and seismic load duration ($C_{D}=1.6$).
3) See attached calculations for anchor bolt embedment length.
4) Holdowns may be installed with up to 18 " above the top of concrete with no load reduction.
5) Use half of the required nails in each member being connected.

C-10	Date:	6/25/2024
Project: Description:	Made By:	RLT
Front-Back \& Side-Side Shear Walls		

Sheathing Thickness: $\quad 7 / 16$ in

Shearwall Nailing:	$\quad 8 \mathrm{~d} \quad$ Values for sheathing shear are based on studs at 16 "o.c. and 15/32 sheathing.
Base Plate Nails:	16 d Commons
Top Plate Hardware:	Simpson LTP4
Anchor Bolts:	$5 / 8 " \emptyset$ Anchor Bolts
$\mathbf{S}_{\mathrm{DS}}:$	$1.000 \quad$ Seismic Controls

1st story																		
Front-Back Input			$\begin{aligned} \text { Story height }(\mathrm{ft}) & = \\ \text { Total Width(ft) } & = \end{aligned}$		$\begin{gathered} 7.75 \\ 20.00 \end{gathered}$	2.19												
Story	Wall	$\begin{gathered} \text { Wall } \\ \text { D } \\ (\mathrm{ft}) \\ \hline \end{gathered}$	Wall Height (ft)	Opening Width (ft)	Opening Height (ft)	Opening to Edge (ft)	Plate to Opening (ft)	Trib.Width (ft)	$\%$ Sharing	$\begin{gathered} \text { Story } \\ \text { V } \\ \text { (kips) } \\ \hline \hline \end{gathered}$	Sum V (kips)	Trib (ft)	$\begin{gathered} \text { DL } \\ \text { (psf) } \end{gathered}$	Trib (ft)	$\begin{gathered} \text { DL } \\ \text { (psf) } \end{gathered}$	$\begin{gathered} \text { Wall } \\ \text { DL } \\ \text { (psf) } \\ \hline \end{gathered}$	Story DL (klf)	Sum DL (klf)
1st	A. 1	2.67	7.75	0.00	0.00	0.00	0.00	10.00	0.12	0.27	0.27	2.00	7.00	0.00	6.00	10.00	0.09	0.09
1st	A. 1	2.67	7.75	0.00	0.00	0.00	0.00	10.00	0.12	0.27	0.27	2.00	7.00	0.00	6.00	10.00	0.09	0.09
1st	A. 1	2.67	7.75	0.00	0.00	0.00	0.00	10.00	0.12	0.27	0.27	2.00	7.00	0.00	6.00	10.00	0.09	0.09
1st	A. 1	2.67	7.75	0.00	0.00	0.00	0.00	10.00	0.12	0.27	0.27	2.00	7.00	0.00	6.00	10.00	0.09	0.09
1st	A. 1	2.67	7.75	0.00	0.00	0.00	0.00	10.00	0.12	0.27	0.27	2.00	7.00	0.00	6.00	10.00	0.09	0.09
1st	A. 1	2.67	7.75	0.00	0.00	0.00	0.00	10.00	0.12	0.27	0.27	2.00	7.00	0.00	6.00	10.00	0.09	0.09
1st	A. 1	2.67	7.75	0.00	0.00	0.00	0.00	10.00	0.12	0.27	0.27	2.00	7.00	0.00	6.00	10.00	0.09	0.09
1st	A. 1	2.67	7.75	0.00	0.00	0.00	0.00	10.00	0.13	0.27	0.27	2.00	7.00	0.00	6.00	10.00	0.09	0.09

Sheathing Thickness:	$7 / 16$ in
Shearwall Nailing:	8 d
Base Plate Nails:	16d Commons
Top Plate Hardware:	Simpson LTP4

Anchor Bolts: 5/8" \emptyset Anchor Bolts

$$
\begin{array}{lll}
\text { SDS: } & 1.000 & \text { Seismic Controls }
\end{array}
$$

1st story

Front-Back
Output

Story	Wall	Aspect Ratio ${ }^{1}$		Panel Shear Factor ${ }^{2}$	Panel Shear $(\mathrm{plf})^{3}$	Panel Edge	Plate Shear (plf) ${ }^{4}$	Base Connection	BTM Plate Connection	Top Plate	Sum OTM$(k-f t)^{5}$	$\begin{gathered} R M \\ (k-\mathrm{ft})^{6} \end{gathered}$	$\begin{gathered} \text { Resultant } \\ \text { HD } \\ \text { (kips) }^{7} \\ \hline \end{gathered}$	Holdown
		Wall	Pier			Nailing				LTP4				
1st	A. 1	2.91	0.00	1.13	116	8d at 6" o.c.	103	A. Bolt	2x w/AB at 48" o.c.	at 24" o.c.	2.12	0.33	0.91	NA
1st	A. 1	2.91	0.00	1.13	116	8d at 6" o.c.	103	A. Bolt	2 x w/AB at 48" o.c.	at 24" o.c.	2.12	0.33	0.91	NA
1st	A. 1	2.91	0.00	1.13	116	8d at 6" o.c.	103	A. Bolt	2 x w/AB at 48" o.c.	at 24" o.c.	2.12	0.33	0.91	NA
1st	A. 1	2.91	0.00	1.13	116	8d at 6" o.c.	103	A. Bolt	2x w/AB at 48" o.c.	at 24" o.c.	2.12	0.33	0.91	NA
1st	A. 1	2.91	0.00	1.13	116	8d at 6" o.c.	103	A. Bolt	$2 \mathrm{xw/AB} \mathrm{at} \mathrm{48"} \mathrm{o.c}$.	at 24" o.c.	2.12	0.33	0.91	NA
1st	A. 1	2.91	0.00	1.13	116	8d at 6" o.c.	103	A. Bolt	$2 \mathrm{xw/AB} \mathrm{at} \mathrm{48"} \mathrm{o.c}$.	at 24" o.c.	2.12	0.33	0.91	NA
1st	A. 1	2.91	0.00	1.13	116	8d at 6" o.c.	103	A. Bolt	2 x w/AB at 48" o.c.	at 24" o.c.	2.12	0.33	0.91	NA
1st	A. 1	2.90	0.00	1.13	116	8d at 6" o.c.	103	A. Bolt	2x w/AB at 48" o.c.	at 24" o.c.	2.12	0.33	0.91	NA

1) NDS 2018 (SDPWS 2015) Section 4.3.4 \& Table 4.3.4. Maximum of wall ratio or pier ratio used
2) NDS 2018 (SDPWS 2015) Section 4.3.4. If $(h / b)>2: 1$ the shear capacity shall be multiplied by the Aspect Ratio Factor (WSP $=1.25-0.125 h / b)$.
3) Panel Shear $=\left(V / L_{\text {wall }}-L_{\text {opening }}\right) *$ Panel Shear Factor
4) Plate Shear $=V / L_{\text {wall }}$
5) $O T M=\left(V^{*} h_{w}\right)+O T M_{a b o v e}$, see diagram on SWCED
$.6-.7(.2 \mathrm{sds})$
6) $R M=\left(\omega_{D L}{ }^{*} L_{w}{ }^{2}\right) / 2$, see diagram on SWCED
7) Resultant $=(O T M-0.6 R M) / L_{w}$, see diagram on SWCED. RM is multiplied by a factor of 0.6 per ASCE $7-16$ Section 2.4 .5 . If seismic controls, a factor of ($\left.0.6-0.7(.2) S_{\text {DS }}\right)$ is applied to the RM per ASCE 7-16 Section 12.4.2.2
8) Force at Windows $=\left(\right.$ Panel Shear $\left.* L_{\text {min }} *\left(H_{w} / 2+H_{s}\right)\right) / H_{s}$, see diagram on SWCED

Shear Wall Calculation Equation Diagram (SWCED)

Shear Wall with Window based on Shear Transfer

Force Transfer Around Window Calculation

$V_{h}=v_{\text {ipanel }} \times L_{\text {min }}$
$\mathrm{V}_{\mathrm{v}}=\mathrm{HD}_{\mathrm{i}}$
$\mathrm{V}_{\mathrm{v}} \quad \mathrm{T}_{\mathrm{h}}=\mathrm{V}_{\mathrm{h}}\left(\mathrm{H}_{\mathrm{w}} / 2+\mathrm{H}_{\mathrm{s}}\right) / \mathrm{H}_{\mathrm{s}}$
$\mathrm{T}_{\mathrm{v}}=$ Is resisted by the continuous stud adjacent to the window. No calculation is required.

CHANGE ORDER

Eagle Building Company
11248 SR 525
Clinton, WA 98236
Phone: (360) 331-7813
Fax: (360) 331-7812

CHANGE ORDER NUMBER:
002

CUSTOMER: Port of South Whidbey

PROJECT: Food Booth Foundation/Structural Repair Contract \#2024-02

The Contract between Eagle Building Company and Port of South Whidbey ("Customer"), dated $05 / 28 / 2024$, is changed as follows:

Add for additional wall framing and shear panel installation beyond original RFP scope- Per June 25, 2024, memo and 1/SSK May 31, 2024, by FACET Engineers. $\mathbf{\$ 2 9 , 5 2 0 . 0 0}$

- Includes required utility relocation \& prevailing wage
- Excludes painting

Sales Tax	$\$ 2,597.76$
Total	$\$ 32,117.76$

- The original Contract Price was
\$38,998.40
- Net change by previously authorized Change Orders
\$12,370.56
- The Contract Price prior to this Change Order was
\$51,368.96
- This Change Order will X increase
\square decrease the Contract Price by \$32,117.76
- The new Contract Price* including this Change Order will be \$83,486.72
- This Change Order will

EagleĐevelopment Group, LLC d/b/a
Eagle Building Company

Customer

Date: 6/27/2024 \qquad Date: \qquad

[^1]
[^0]: *The new contract price does not include claims or issues of delays, extended field or home office overhead. It includes only the cost of performing the work described above.

[^1]: *The new contract price does not include claims or issues of delays, extended field or home office overhead. It includes only the cost of performing the work described above.

